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Abstract. We compute the stationary in-degree probability, P (kin), for a growing network model with
directed edges and arbitrary out-degree probability. In particular, under preferential linking, we find that
if the nodes have a light tail (finite variance) out-degree distribution, then the corresponding in-degree one
behaves as k−3

in . Moreover, for an out-degree distribution with a scale invariant tail, P (kout) ∼ k−α
out, the

corresponding in-degree distribution has exactly the same asymptotic behavior only if 2 < α < 3 (infinite
variance). Similar results are obtained when attractiveness is included. We also present some results on
descriptive statistics measures such as the correlation between the number of in-going links, Kin, and
outgoing links, Kout, and the conditional expectation of Kin given Kout, and we calculate these measures
for the WWW network. Finally, we present an application to the scientific publications network. The
results presented here can explain the tail behavior of in/out-degree distribution observed in many real
networks.

PACS. 05.65.+b Self-organized systems – 89.75.Kd Patterns – 87.23.Ge Dynamics of social systems –
02.50.Cw Probability theory

1 Introduction

Barabási and Albert [1] discovered that several networks
in nature have a strange topological characteristic: they
have a scale-free [2–4] degree distribution, P (k) ∼ k−α,
where the degree of a vertex is defined as it total number
of connections. Nowadays, this empirical behavior is con-
firmed in a great number of completely different empirical
networks, from biological networks to e-mail networks, in-
cluding scientific publication networks. Focusing on undi-
rected networks, in [1] the authors also proposed a model
(B-A model) for explaining this behavior. The model can
be formulated as follows: 1) start with a network with
N nodes, connected by j edges in an arbitrary way; and
2) at each time step, a new node with m edges appears,
each edge connecting to the existing nodes according to
some probability law, π. The probability that a new edge
attaches to a node with degree k, πk, was defined [1] as
proportional to the degree of the node. In particular, they
showed that with this attachment law,

πk =
kNk

∑

j∈N

jN j
, (1)
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where Nk is the number of nodes with degree k, the sta-
tionary degree distribution has a power law tail, P (k) ∼
k−3. In [5] they computed the stationary degree probabil-
ity (not only the tail behavior) for the B-A model, but
for a generalization of the preferential linking attachment
law. They introduced a new parameter, the attractiveness,
A (in their case A ≥ −m), and defined the attachment
law as:

πk =
(k + A)Nk

∑

j∈N

(j + A)N j
. (2)

In this case, they found that P (k) ∼ k−(2+A/m), being
more flexible for comparing to empirical networks. Typi-
cally, degree distribution of real networks satisfy, P (k) ∼
k−α with 2 ≤ α ≤ 3. But the B-A model, no matter which
is the attachment law, has a major drawback, the number
(m) of edges that arise from new nodes is a fixed number.
In almost all real networks, the new nodes do not have
the same number of edges. On the other hand, the num-
ber of edges of a random selected new node (from a real
network) is a random variable. So, in order to be more re-
alistic, we will study the B-A model in the case where the
new nodes appear with a random number of edges, but in
the more general context of directed growing networks. In
this context, new questions arise from empirical networks.
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Directed networks are characterized by the fact that
the edges are directed (arrows), each node has edges that
point at it, and others that born in it. The in-degree of
a node is defined as the number of incoming edges, the
out-degree as the number of its outgoing edges, and the
degree is the sum of the two previous ones. The most stud-
ied directed growing networks have been the WWW net-
work [7,8,13], and the scientific publications network [6].
In the first one, each node represents a web page and the
hyper-links (references to other web pages) represents the
directed edges or links. In the second one, each paper is
a node, and its references the directed links. In this last
case, the in-degree distribution represents the distribution
of citations for a random selected paper, and the out-
degree distribution represents the number of references
of a random selected paper. Interestingly, real directed
growing networks follow in general one of two possible
behaviors. In the first case they have an out-degree expo-
nential distribution, P (kout) ∼ akout (0 < a < 1), or an
out-degree distribution taking finitely many values, asso-
ciated with an in-degree distribution with a power law tail
P (kin) ∼ k−α

in where typically α ≈ 3. In the second case
the out-degree distribution satisfies P (kout) ∼ k−β

out, and
is associated with P (kin) ∼ k−α

in with α ≈ β. Examples,
such as biological, WWW, or communication networks,
can be found in [2–4,9].

In this paper, we address the question of why the em-
pirical growing directed networks show this strange gen-
eral behavior for the tail of the in/out degree distributions.
We study a particular growing network model (a general-
ization of the B-A model to be precise), obtaining the sta-
tionary joint in-out degree distribution, P (kin, kout), and
some of its derivatives, such as the marginal distribution,
P (kin), the covariance, and the conditional expectation
of the number of in-links given the number of out-links.
In particular, studying in detail P (kin), we prove (for the
model presented here) that it is expected to observe the
in/out tail behavior reported for real networks [2–4]. Fi-
nally we present an application to the most “pure” (ex-
tremely few double arrows) growing directed network: the
scientific publication network. In this application, we show
the relevance of having an expression for the limit in-
degree distribution (P (kin)) for an arbitrary out-degree
one (P (kout)).

2 Growing directed network model

Before describing the model, it is important to remark
that real directed growing networks have in general a con-
siderable asymmetry between the in-links and out-links of
a node. For example, nobody will care much about how
many references (out-links) an own paper has, but people
are interested in the number of cites (in-links) that their
own paper has. That is why we are going to treat the out-
links from a new node and the in-links in a completely
different way. In particular, a node can receive (with pos-
itive probability), a connection from a new node at any
moment, but typically a node can not change who their

Fig. 1. Scheme of the growing network model. In each tem-
poral step a new node (shown in black) with Kout out-
links appears; these links point towards existing nodes. Kout

is not a fixed number, on the contrary it is a random
variable. The degree vector at time 0, and 1 is: N 0 =
(1, 4, 0, 0, 1, 0, 0, 0, ..., 0, ...), N 1 = (1, 4, 1, 0, 0, 1, 0, 0, ..., 0, ...).

pointers (the set of nodes it is pointing to) are. This is very
clear in the scientific publications network. In this network
the in-degree distribution has been extensively study [6,8],
whereas the out-degree distribution has been poorly re-
ported [10,12]. Nevertheless, in the case of the WWW
network, the outgoing links (hyper-links) can change at
any moment and new hyper-links can be aggregated or
old hyper-links can be redirected. In [7,8] they proposed
some models for describing this network taking into ac-
count the characteristics mentioned above. However these
models do not consider that the new nodes have a particu-
lar out-degree distribution, i.e. the models are constructed
under the hypothesis that new nodes have a fixed num-
ber of out-links. The major problem of both models is
that the nodes (web-pages) do not have a controlled num-
ber of out-links, they can have a huge number of them
which does not seem realistic. Our strategy for modeling
these networks is completely different to the ones proposed
in [7,8]. For us, most of the variability in the number of
out-links is explained when the node appears, defined as
“intrinsic” variability, and not as a product of updating
nodes. We think that in many real networks the updat-
ing of nodes can give a small correction compared with
the “intrinsic” variability. This assumption is at the core
of our model. In a real network the “intrinsic” variability
is given by different reasons that are hard to know (why
does a randomly selected scientific paper has a number of
references with some particular distribution?), but typi-
cally the problem of trying to understand this variability
is not a major question.

We define Nn = (N1
n, N2

n, ..., Nk
n , ...) as the degree vec-

tor at time n, where N j
n is the number of nodes with degree

j at time n, and N in,n = (N1
in,n, N2

in,n, ..., Nk
in,n, ...) as

the in-degree vector, where N j
in,n is the number of nodes

with in-degree equal j at time n. Now, we describe the
growing network model: 1) initially the network consists
of M nodes connected in a given arbitrary way; 2) at
each time step, say time step n + 1, a node with Kout

outgoing-edges appears, where Kout is a random variable
(

∑

kout∈N

P (Kout = kout) = 1); and 3) each new directed

edge points out to an existing node with some probabil-
ity law πn+1 (uniform, preferential linking, etc.). Figure 1
illustrates a scheme of the model. If πn+1 is an arbitrary
function that depends on Nn, and/or N in,n (Nout,n),
then the growing network model, described above is a
Markov chain taking values in N

N
o (No = N ∪ {0}) or
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No × N
N

2

o with transition probabilities given by πn+1. In
this work (under the Markovian hypothesis), we show an
easy way to compute stationary (in/out) degree probabil-
ities for arbitrary πn+1. An important part of this article
is devoted to the study of the model under the law:

πk
n+1 =

(A + k)Nk
n

∑

j∈N

(A + j)N j
n

, (3)

and in Section 2.4 we show some results under different
π’s. The law of equation (3) corresponds to preferential
linking on degree with attractiveness. This probability is
well defined for values of A greater or equal to –B, where

B := min
j

{j : P (Kout = j) > 0}. (4)

For this attachment law, the model is in fact an exten-
sion of the Albert-Barabási model, although in this case
Kout is a random variable with an arbitrary distribution,
P (Kout = kout) with kout ∈ N, and the edges are directed.
The limit (stationary) in-degree distribution and the limit
degree distribution have not been reported, even for sim-
ple cases as Kout taking values 1 and 2, with probabilities
p1 and 1 − p1 respectively. Moreover, even in the undi-
rected case, it is not known if in general the limit degree
distribution (P (k)) satisfies a superposition principle (lin-
ear combination).

2.1 Stationary probabilities

The number of out-links does not depend on time (see
Sect. 2.5 for additional details), therefore, the limit out-
degree distribution satisfies P (kout) ≡ P (Kout = kout).
Note that the out-degree distribution is defined a priori
(in accordance with the specific network), imposing in
this way the asymmetry mentioned before between the
in and out links of a node. We are interested in obtaining
the limit degree distribution, P (k), and the limit in-degree
one, P (kin). In order to compute this last probability func-
tion, we first compute the stationary joint degree and out-
degree distribution, P(k, kout) := P (K = k, Kout = kout),
where K is the degree (K = Kin + Kout) of a random se-
lected node. If the network is distributed according to the
stationary probability, then the probability that a ran-
domly chosen node has kout out-links and k total links,
K = (K, Kout) = (k, kout), is given by:

P(k, kout) = P (K = (k, kout)) = lim
n→∞

N k,kout
n

∑

h,i∈N

N h,i
n

where N h,i
n is the number of nodes with h total links from

which i are out-links at time n. The last equality holds
by the Law of Large Numbers for Markov chains. Clearly,
the joint in-out degree can be computed from this last one,
P (kin, kout) = P(kin + kout, kout), and also the in-degree
and degree probability taking marginal distributions.

N j,k
n+1 depends on: 1) N j,k

n ; and 2) the transition prob-
abilities, Πn+1. As it is usual for Markov chains, we as-
sociate to the transition probabilities of this chain some
random variables that we now describe. In the first place,
there is the out-degree, Kout, of a new node. Secondly,
we consider at each time n + 1 a sequence of independent
and identical distributed bivariate random vectors {Zi},
taking value (j, k), j, k ∈ N, with probability Πj,k

n+1, which
depends on the state of the chain at time n. Based on the
previous random variables, the growing network dynamics
can be written as:

N j,k
n+1 = N j,k

n + ∆j,k
n ∀j ≥ k ∈ N (5)

where

∆j,k
n =

⎧
⎪⎪⎨

⎪⎪⎩

Kout∑

i=1

δZi=(j−1,k) − δZi=(j,k) for j > k

δKout=j −
Kout∑

i=1

δZi=(j,j) for j = k.

(6)

The random vector Zi indicates to which type of node
the i link (of the new node) is pointing to. For example,
if Z1 = (3, 2), a new link is pointing to an existing node
with 2 out-links and 1 in-link (or 3 total links). Clearly,
in order to have a good representation of the growing net-
work process, the probability law of Zi must be equal to
Πj,k

n+1, as we impose. Equations (5) and (6) can be read
in the following way: if at time n + 1 a new node with
Kout = m out-links is aggregated, then Nm,m

n+1 grows by
one, and m components of the degree vector undergo a
“shift”. As the network continues to grow, the goal is to
find whether there exists a limit distribution for the in-
out degree. For very large values of n, given a randomly
selected node, what is the probability that this one has k
links, of which kout are out-links, P(k, kout)?

The traditional approach [5,11,20] for finding station-
ary probabilities is based on the Kolmogorov rate equa-
tion. Here, we present a complementary technique. The
following property shows a way of computing P(k, kout)
which has interest on itself.

Property. P(k, kout) is the solution of:

P(k, kout) = 〈∆k,kout
n /Θn〉 ∀k ≥ kout ∈ N, (7)

where Θn is the event that imposes that the empirical dis-
tribution at time n is equal to the stationary distribution,
i.e. Θn = { Nh,i

n∑

l,m∈N

N l,m
n

= P(h, i) ∀h, i ∈ N}. The previous

property says that if the process at time n is distributed
according to the stationary probability, P , it will remain
there in expectation.

Using the property mentioned above and equation (6),
it is easy to see that the stationary joint deg-out distribu-
tion, P , satisfies:

P(k, kout) = Πk−1,kout〈Kout〉 − Πk,kout〈Kout〉
P(k, k) = P (Kout = k) − Πk,k〈Kout〉

(8)
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for k > kout ∈ N, where 〈Kout〉 =
∞∑

kout=1

koutP (kout).

These two equations contain all the information about the
limit joint in-out degree distribution, being a crucial result
in this paper. It is important to note that since we have
conditioned on the fact that at time n the process is dis-
tributed according to the stationary probability, the link
attachment probability does not depend on time. Now,
Πk,kout denotes the stationary probability that a new link
(from a new node) point to an existing node with k−kout

in-degree links (or k total links) and kout out-degree links.
Under preferential linking on degree with attractiveness
(Eq. (3)), the stationary attachment law remains:

Πk,kout =
k + A

〈K〉 + A
P(k, kout). (9)

The marginal distribution of equation (9), πk =
k∑

kout=1

Πk,kout , is the stationary version of πk
n+1 presented

in equation (3). Replacing equation (9) in equation (8),
and using 〈K〉 = 2〈Kout〉 (for each new node with kout

out-links, the total degree increases by 2kout) we obtain:

P(k, kout) =
Ψ(k + A, 3 + δ)

Ψ(kout + A, 2 + δ)
P (kout), (10)

where Ψ(a, b) ≡ Γ [a]Γ [b]
Γ [a+b] =

∫ 1

0 ta−1(1− t)b−1dt (Beta func-
tion), and δ = A/〈Kout〉. From equation (10), taking
marginal distributions, it is trivial to obtain:

P (kin, kout) =
Ψ(kin + kout + A, 3 + δ)

Ψ(kout + A, 2 + δ)
P (kout) (a)

P (k) = Ψ(k + A, 3 + δ)
k∑

kout=1

P (kout)
Ψ(kout + A, 2 + δ)

(b)

P (kin) =
∞∑

kout=1

P (kout)
Ψ(kout + kin + A, 3 + δ)

Ψ(kout + A, 2 + δ)
. (c)

(11)
Equation (11) shows the joint stationary in-out degree
probability, the degree distribution and the in-degree dis-
tribution. In the stationary regime (for the probability)
the proportion of nodes with kin in-links and kout out-
links (Eq. (11a)), depends on the attractiveness, and on
the out-degree distribution through two quantities: 〈Kout〉
and P (kout). The same happens for P (k) and P (kin).
Equation (11b) gives the stationary degree probability for
arbitrary out-degree distribution (see Appendix A for a
simpler derivation). Note that just by replacing P (kout)
by δkout=m (this means a non-random Kout and equal to
m) we obtain the known result [5] for undirected net-
works. Equation (11c) constitutes one of the main re-
sults of the paper. Replacing P (kout) by the empirical
value, we can check whether the model is adequate for
the network under study. Moreover, it is possible to see
that a superposition principle does not hold, either for
P (k), P (kin), or P (kin, kout). They cannot be written as

P (k) =
∞∑

kout=1

P (kout)Qkout(k), where Qkout(k) is the sta-

tionary probability for a fixed number kout of out-links.
The superposition principle will be valid for the three
limit distributions only when the attractiveness vanishes
(preferential linking). In this way, the preferential linking
generalization (the inclusion of attractiveness) introduced
in [5] has the advantage of enlarging the power exponent
values of the degree distribution, with the drawback of
loosing a superposition principle. If we allow the appear-
ance of new nodes with zero out-links (P (Kout = 0) > 0),
then the results presented in equations (11b) and c, still
hold after switching the initial index in the summation
from 1 to 0 and taking kout ∈ No. In this last case, the
attractiveness must be greater or equal zero (see Eq. (4)).

2.2 Descriptive statistics

Before trying to describe a real network by a model, some
first checks are recommendable. One typical measure that
has been extensively used is the clustering coefficient, that
is a measure of how connected the neighbors of a node are.
We are going to discuss much simpler descriptive measures
that are useful tools for looking for the “best” model.
Therefore, it is important to have analytical devices for
comparing with real data in the search of a good model.

2.2.1 Covariance and conditional expectation

A measure of dependence between the in-degree and the
out-degree can give an idea of which is the attachment law
that better describes the empirical data. The covariance
between Kout and Kin, Cov(Kin, Kout) = 〈KinKout〉 −
〈Kin〉〈Kout〉 is an adequate statistical measure for this
purpose. For example, in the case where the law of at-
tachment is preferential linking on in-degree (Eq. (25))
this measure is obviously zero (Kin and Kout are inde-
pendent). For the case studied in detail here, preferential
linking on degree (Eq. (3)), it is straightforward to see
that the covariance between Kout and Kin in the particu-
lar case A = 0, satisfies the following equation:

Cov(Kin, Kout) =
1
2
Cov(K, Kout) = Var(Kout) (12)

where Var(Kout) = Cov(Kout, Kout). The covariance be-
tween Kout and Kin is always positive or zero (for non
random Kout), as it is expected for this type of attach-
ment law. Equation (12) instead can be written in terms
of the correlation, r = Cov(Kin,Kout)√

Var(Kin)Var(Kout)
, in the following

way:

r =

√
Var(Kout)
Var(Kin)

. (13)

It is surprising that the correlation between Kin and Kout

satisfy this simple relationship between the standard devi-
ations, r is the ratio between

√
Var(Kout) and

√
Var(Kin).
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Since the correlation coefficient is always less or equal 1,
we obtain the following inequality:

Var(Kout) ≤ Var(Kin). (14)

Although it is very easy for real network to estimate the
variance of the number of out and in links, and also the
covariance (or correlation) between the in and out-degree,
these measures are not typically reported (see Appendix B
for results on the WWW network).

On the other hand, the first right term of the covari-
ance always satisfies:

〈KinKout〉 =
∑

kout∈N

kout〈Kin/Kout = kout〉P (kout), (15)

where 〈Kin/Kout = kout〉 is the conditional expectation of
the number of in-links given that the node has kout out-
links. From equations (12) and (15) it is very easy to see
that:

〈Kin/Kout〉 =
1
2
〈K/Kout〉 = Kout. (16)

The relationship between 〈Kin/Kout〉 and Kout can be a
second check to make before modeling. For a real network
this can be done in the following way, choose all the nodes
that have a number Kout of outgoing links, and take the
mean of the number of in-links over this set of nodes. If the
conditional mean is equal to Kout for all values of Kout,
then this is an indication that the model can be adequate.

For non null attractiveness it is hard to obtain an-
alytical results, nevertheless, we compute numerically
〈Kin/Kout〉 for different values of Kout and attractiveness.
From equation (11a) and the definition of conditional ex-
pectation, it is easy to obtain:

〈Kin/Kout〉 =
∑

j∈N

j
Ψ(j + Kout + A, 3 + δ)

Ψ(Kout + A, 2 + δ)
. (17)

Figure 2a shows the numerical results of 〈Kin/Kout〉 based
on equation (17). For any value of the attractiveness and
〈Kout〉, the conditional expectation follows a linear rela-
tion with Kout:

〈Kin/Kout〉 = f(A, 〈Kout〉)Kout + g(A, 〈Kout〉). (18)

The slope, f(A, 〈Kout〉), and the intercept, g(A, 〈Kout〉),
of this straight line satisfies:

lim
A→∞

f(A, 〈Kout〉) = 0

lim
A→∞

g(A, 〈Kout〉) = 〈Kout〉,
(19)

as it is shown in Figure 2b and 2c. For positive values of
attractiveness the slope is smaller than one, going to zero
as the attractiveness goes to infinity. In the case A →
∞, Kin and Kout are independent (always with the same
expectation). Finally, for negative values of A the slope
is greater than one. Studying the empirical relationship
between 〈Kin/Kout〉 and Kout can give some insight on
the model. Moreover, if this relationship is linear, from

Fig. 2. (a) Conditional expectation of in-degree given the out-
degree. Each straight line correspond to a different value of
attractiveness (specified in the graph). (b) Slope and (c) Inter-
cept of the type of straight lines shown in (a) as a function of
the attractiveness for two different values of 〈Kout〉.

Figure 2b and 2c, it is possible to have a first estimation of
the attractiveness. In Appendix B we show the statistical
measures presented here for the WWW network.

It is important to note that equations (12) (which in-
cludes (13), (14), and (18) (which include (16)) holds for
any out-degree distribution (P (kout)). These results do
not depend on the details (shape) of the out-degree dis-
tribution. Nevertheless, there exist some measures that
do not share this nice property. For example, the condi-
tional number of out-links given the number of in-links,
〈Kout/Kin〉, depends explicitly on P (kout), as can be seen
in the following equation:

〈Kout/Kin〉 =

∞∑

kout=1

kout
Ψ(Kin+kout+A,3+δ)

Ψ(kout+A,2+δ) P (kout)

∞∑

hout=1

Ψ(Kin+hout+A,3+δ)
Ψ(hout+A,2+δ) P (hout)

.

(20)
Next, we present another measure useful for model selec-
tion.
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Fig. 3. Stationary in-degree probability tail under preferential
linking with attractiveness, for an out-degree with P (kout) ∼

1

k
2+β
out

, as a function of δ = A
〈Kout〉 and β. The horizontal axis

corresponds to preferential linking (A = 0). In the separatrix

curve, δ = β − 1, P (kin) ∼ log(kin)

k3+δ
in

= log(kin)

k
2+β
in

.

2.2.2 Relationship between the distribution tails

Now, we study the relationship between the tails of
the in-degree and the out-degree distributions. In the
case A = 0, if the out-degree distribution has finite
expectation (〈Kout〉 < ∞) and a scale invariant tail,
P (kout) ∼ k

−(2+β)
out , it is not difficult (from Eq. (11b))

to see that the limit degree distribution and the in-degree
distribution have the following tail behavior:

P (kin) ∼ P (K = kin) ∼

⎧
⎪⎨

⎪⎩

k
−(2+β)
in 0 < β < 1

log(kin)k−3
in β = 1

k−3
in β > 1.

(21)

Equation (21) constitutes our second main result: if the
out-degree distribution has finite variance and a scale in-
variant tail, P (kout) ∼ k

−(2+β)
out , then the limit in-degree

distribution has also a scale invariant tail, P (kin) ∼ k−α
in .

Moreover, for 0 < β < 1, α is equal to the out-degree
exponent. This last result can explain why in so many
real networks the in and out power exponents are so sim-
ilar, taking values in a range from 2 to 3. In the case
β > 1, α = 3, regardless of the value of β. For the frontier
case (finite/infinite variance) of β = 1, the limit distribu-
tion decays at a slower rate than k−3

in . Precisely, it decays
as P (kin) ∼ log(kin)k−3

in . In the general case of prefer-
ential linking with attractiveness for P (kout) ∼ k

−(2+β)
out ,

the regimes are similar to the non-attractiveness case. In
this case, there is a separatrix curve between the in-degree
behaviors, as it is shown in Figure 3. The behavior is regu-
lated by δ ≡ A/〈Kout〉 and β. For δ > 1+β, the (in) degree
distribution has exactly the same tail as the out-degree
(P (Kout = k) ∼ P (Kin = k) ∼ P (K = k) ∼ k−(2+β)),

Fig. 4. Citation distribution for all papers published in 1981
(from the ISI) cited between 1981 and 1997. The theoretical
citation (in-degree) curves are calculated by equation (11c) as-
suming that A = 0, and the out-degree distribution is geo-
metric, P (kout) = p(1 − p)kout for k ∈ No. The dashed line
corresponds to p = 0.104 (T = 0.115). The solid line cor-
responds to P (kout) = 0.7622781p(1 − p)kout for k ∈ N and
P (Kout = 0) = 0.3, with p = 0.0817 (T = 0.023). Inset: dif-
ference between the empirical cumulative distribution and the
theoretical cumulative distribution. Data from [16].

even for large β. For δ < 1+β, P (kin) behaves as k
−(3+δ)
in .

Finally on the separatrix curve, δ = 1+β, the asymptotic
behavior goes as log(kin)k−(3+δ)

in . Note that δ can not be
smaller than –1, since 〈Kout〉 must be (see Eq. (4)) greater
than –A.

For out-degree distributions with exponential tails, as
a geometric, Poisson, or finite range distributions, the in-
degree distribution satisfies that P (kin) ∼ k

−(3+δ)
in , even

for negatives values of δ. In [12] they show that the PRL
citation network has an out-degree distribution with expo-
nential decay, and an in-degree distribution with a power
law tail with α near 3, just as described before for the
null attractiveness case. We remark the following: a) if the
model is adequate for describing a real growing network,
and this network has an out-degree distribution with ex-
ponential tail, and a scale invariant in-degree distribution
with a power between 2 and 3, then attractiveness param-
eter must be negative; and b) if the empirical in-degree
distribution has a scale invariant tail with a power less
than 2, then the model presented here is not adequate for
describing this network. Keeping in mind the last point,
the new estimations [13] of the in-degree power exponent
of the WWW network, would rule out the model for de-
scribing this particular network.

2.3 Application: scientific publications network

The scientific publications network has two advantages
that define it as the most “pure”: 1) extremely few double
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arrows; and 2) all the variability in the number of out-
links is “intrinsic”. These two features guarantee that our
model (see Fig. 1) is adequate for describing the scientific
network. Nevertheless, it is not clear which is the attach-
ment law (π) such that we can obtain a good mimic of the
growing network process.

Figure 4 shows the citation distribution for all (1981)
scientific publications published (from the ISI dataset)
cited between 1981 and 1997 (see [6]). Clearly, this distri-
bution represent the in-degree one of a growing directed
network. We suppose this distribution correspond to the
stationary case1.

Unfortunately the out-degree distribu tion (P (kout)),
the number of references that has a randomly selected pa-
per, has not been reported, making impossible a plug-in
approach (see Eq. (11c)) to test the growing model. Nev-
ertheless, we take the following strategy: we suppose a
geometric out-degree distribution P (kout) = p(1 − p)kout

with k ∈ No, a preferential linking on degree attachment
law (Eq. (3) with A = 0), and finally we estimate p. Prob-
ably the empirical out-degree distribution (P (kout)) does
not fall in any family of parametric distributions. How-
ever, a well estimated in-degree distribution will be a pos-
itive result, since the in-degree distribution is obtained as
a result of a theoretical computation based on the out-
degree distribution. In order to estimate p, we first com-
pute the average number of citations in the ISI network
(〈citations〉 = 8.573) and impose the condition:

〈citations〉 = 〈references〉. (22)

With this condition (〈Kin〉 = 〈Kout〉) we obtain that p =
1/(9.573). The dashed line in Figure 4 corresponds to this
case. If we estimate separately the case k = 0, and assume
that the out-degree distribution is such that P (Kout =
0) = a, and P (kout) = cp(1 − p)kout for k ∈ N with c =
(1−a)/(1−p), we obtain p = (1−a)/8.573 after taking the
mean value condition (Eq. (22)). Curiously, for a = 0.3
(p = 0.0817) the theoretical in-degree probability (solid
line) is extremely similar to the empirical one in all the
range of the distribution. This can not be achieved with an
oversimplified model where P (kout) = δkout=m. But, this
is not the only P (kout) that fits perfectly well, hence we
do not assert that the estimated P (kout) must be similar
to the real citation distribution. Moreover, the estimated
P (kout) does not seem very adequate, since under this
probability distribution 30% of all scientific publications
do not contain any reference (yet, note that in [10] it was
reported that 10% of all publications do not contain any
reference).

In order to have a better notion of the goodness of
fitness we compute the Kolmogorov statistic,

T = max
k∈No

|G(k)| = max
k∈No

|FP̂in
(k) − FP theo

in
(k)|, (23)

1 If the scientific network has arrived (in 1997) to a propor-
tion of papers with k citations that do not change with time
(stationary), then the articles published in a particular year
(1981) are a sample of this distribution

where FP (k) is the cumulative distribution,

FP (k) =
k∑

j=0

P (j). (24)

P theo
in correspond to the theoretical in-degree distribution

showed in equation (11)(c) assuming a particular P (kout),
and P̂in correspond to the empirical citation distribution.
One advantage of the T statistic (Eq. (23)) is that it is
now possible to test whether the model (including the at-
tachment law) is adequate for describing the real network.
In this growing network application, the null hypothesis
is Ho: the real growing network has an underlying link
attachment law that is preferential on degree. For the
simplest case where T compares an empirical distribution
with a theoretical one, but without estimating parameters,
the null hypothesis will be rejected (at a 0.05 level of sig-
nificance) only if T > 0.0015. In the case shown with solid
line T = 0.023, and for the case where P (kout) is geometric
(dashed line) T = 0.115. Clearly, T is a good measure for
ranking models (or model selection). The inset of Figure 4
shows the function G(k) for both out-degree distributions
proposed. For the geometric (dashed line) case the max-
imum distance between the cumulative distributions (see
Eq. (23)) occurs at k = 0, and for the other case (solid
line) at k = 10.

As we mentioned at the beginning of this section, the
model is adequate for the scientific publication network,
but the attachment law is completely unknown. We have
proposed one, preferential linking on degree, but we do
not have the possibility to corroborate it. This is one of
the reasons why we are going to study the model under
different attachment laws. The only weak argument in fa-
vor of the law given by equation (3), is that review papers,
that have a huge number of references, are typically highly
cited [17] compared with regular articles that have a small
number of references. In this way, the correlation between
Kin and Kout will be positive, which is a virtue of the law
defined in equation (3).

2.4 Different attachment laws

Clearly, it may happen that for a real network the informal
checks (covariance, variance and conditional expectation)
discussed before might be inconsistent with the observ-
ables of the model. In this case, three things may be hap-
pening: 1) the link attachment law is not adequate; 2) the
model is not correct; or 3) both before. The first point is
related to the mechanism of linking: preferential, uniform,
non linear preferential, or may have some age dependency
as described in [18,19]. The second point correspond to
the growing mechanism, that can be seen as the core of
the model. For example, updating of nodes, or a very high
proportion of double links can be present, that are not
considered in the model. In this section we discuss only
the alternative where the attachment law is different from
the one proposed in equation (3) (preferential linking on
degree), but the core of the model remains true.
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2.4.1 Preferential linking on in-degree

In [5] the authors studied the B-A model when the attach-
ment law depends on the degree and on the attractiveness.
The proposed law can be expressed in the following way 2:

πkin

in =
(kin + A)Nkin

in∑

hin∈No

(hin + A)Nhin

in

, (25)

where Nkin

in is the number of nodes with in-degree equal
kin, and now the attractiveness (A) is greater or equal
zero. In principle, this can be a good attachment law for
the scientific publications network. The joint attachment
law in this case is given by:

Πk,kout =
k − kout + A

〈Kout〉 + A
P(k, kout), (26)

where we have used that 〈Kin〉 = 〈Kout〉. Replacing equa-
tion (26) in equation (8), it is very easy to compute the
stationary probabilities:

P (kin) =
Ψ(kin + A, 2 + δ)

Ψ(A, 1 + δ)

P (k) =
1

Ψ(A, 1 + δ)

k∑

kout=0

P (kout)Ψ(k − kout + A, 2 + δ)

P (kin, kout) = P(kin + kout, kout) = P (kin)P (kout)
(27)

where k, j ∈ No. This case is specially easy to solve be-
cause, for a randomly selected node, the number of out-
links (Kout) and the number of in-links (Kin) are inde-
pendent random variables (P (kin, kout) = P (kin)P (kout)).
This mean:

r = 0 (a)
〈Kin/Kout〉 = 〈Kout/Kin〉 = 〈Kout〉. (b)

(28)

One big difference between the previous attachment law
(Eq. (3)) and this one (Eq. (25)) is that Pin(k) depends
only on the mean number of out-links (〈Kout〉) by δ
(A/〈Kout〉), and not on the shape of the out-degree dis-
tribution. For A > 0 and kin � 1, P (kin) behaves as
k
−(2+δ)
in no matter which is P (kout) (only depends on

〈Kout〉). Therefore, under the attachment law given by
equation (25), the tail of the out-degree distribution does
not give any information about the tail of in-degree dis-
tribution, contrary to what happens for the law of equa-
tion (3). In addition, for this new attachment law the cor-
relation between Kin and Kout is zero (Eq. (28a)), and the
conditional expectation of Kin (Kout) given Kout (Kin)
does not depend on Kout (Kin) (Eq. (28b)).

2 For a fixed number of out-links equal m (B-A model),
(A+k)Nk

in
∑

j∈No

(A+j)N
j
in

= (A+k)Nk+m
∑

j∈No

(A+j)Nj+m = (Ã+k+m)Nk+m

∑

j≥m
(Ã+j+m)Nj+m , where

Ã = A − m. The attachment law of equation (25) is equiv-
alent to the one of equation (2) replacing A by A − m.

Note that πkin

in is well defined only for positive or zero
values of attractiveness. But, only strictly positive values
of A are interesting, since for A = 0 we get that the sta-
tionary probability is P (kin) = δkin=0. This last result is
easy is to understand: new nodes appear but they can not
be pointed by other nodes (A = 0), and in this way the
network will be formed by almost all nodes with zero in-
links and only a few (given by the initial condition of the
network) with many in-links. Clearly, in the limit n → ∞
the proportion of nodes with kin in-links goes to a delta
function (δkin=0).

2.4.2 Uniform attachment law

It is thus clear that even when preferential linking is an
accepted mechanism of link attachment, it is necessary to
study [20,21] alternative types. For the uniform attach-
ment law on degree:

πk
unif =

Nk

∑

j∈N

N j

Πk,kout = P(k, kout) (29)

by means of the same technology (replacing Πk,kout in
Eq. (8)) we obtain:

P (k) =
1

1 + 〈Kout〉
k∑

kout=0

P (kout)
( 〈Kout〉

1 + 〈Kout〉
)k−kout

P (kin) =
1

1 + 〈Kout〉
( 〈Kout〉

1 + 〈Kout〉
)kin

.

(30)
Note that, P (kin) depends only on 〈Kout〉 (and not on
P (kout)), and decays exponentially fast. For an out-degree
with P (kout) ∼ k

−(2+β)
out , P (k) behaves as k−(2+β)f(k)−1,

where f(k) is an increasing function of k that grows more
slowly than log(k). It is important to remark that for em-
pirical (finite) networks, the f(k)−1 term will be very dif-
ficult to discriminate (f(k) grows at a rate slower than
log(log(k))). This behavior may be hard to “separate”
from P (k) ∼ k−(2+β), but the in-degree distribution will
sort out any possible confusion about the link attachment
law.

2.5 Implementation of the model

Being rigorous, the model as it was presented in Section 2
is not well defined. Yet, as we discuss in this section, this
is not a serious problem (all the results presented before
hold). The difficulty is that P (kout) is any probability dis-
tribution. In particular, it includes the ones that take in-
finitely values (such as geometric, or any one with expo-
nential or power law tails). The problem can be stated as
follows: if a new node, for example has 1000 links and the
network has 100 nodes, ¿what do we must do with the
remaining 900 links?
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We describe below the correct form of the model (that
can be implemented):

(1) initially the network consists of n nodes connected in
a given arbitrary way;

(2) at each time step starting from n+1, say time step r, a
node with K̃r

out outgoing-edges appears. K̃r
out is a ran-

dom variable with law Qr(kout) (Qr(kout) ≡ P (K̃r
out =

kout), and
r∑

j=1

P (K̃r
out = j) = 1);

(3) each new directed edge points out to an existing node
with some probability law πr (uniform, preferential
linking, etc.).

The distribution of the number of out-links from a new
node at time r (the networks has r − 1 nodes) is defined
by the following equation:

Qr(kout) = P (Kout = kout/Kout < r). (31)

Qr(kout) is the conditional distribution of Kout given
Kout ≤ r − 1. From definition 31 is very easy to see that
Qr(kout) converge to P (kout),

lim
r→∞Qr(kout) = P (kout), (32)

as the network grows, where P (kout) is the distribution
defined a priori (see Sect. 2). From this last convergence
we can see that the model with this correction (we have
only changed P (kout) by Qr(kout)) has exactly the same
asymptotic behavior that was obtained for the model pre-
sented in Section 2. Therefore, all the results presented
in this paper also hold for the corrected model. The gen-
eral conclusion would be: “small effects disappear at ∞”.
See, for instance Section 2.4.1 where we discuss why does
P (kin) converge to δkin=0 for A = 0.

To illustrate, we present simulations of the corrected
model. We start with a network of only 3 nodes where
each of them has an out-degree and in-degree equal to one
(triangle configuration), and let the network grows, under
a preferential linking on degree with null attractiveness
(Eq. (3)) attachment law, up till it reaches 100 000 nodes.
In each temporal step a new node appears, which has
a number of out-links, K̃r

out (random variable), that de-
pends on the number of nodes (r) in the network. Figure 5
shows the in-degree and out-degree distribution (points)
obtained from the simulations, for different conditional
probability laws (Qr(kout)) for K̃r

out. For example, in Fig-
ure 5a we show the empirical (in)out-degree distribution
for the case where K̃r

out has a probability law P (K̃r
out =

kout) = ck−2.1
out (for kout ∈ 1, 2, ..., r), where c is the normal-

ization constant. The solid lines in the out-degree distri-
butions correspond to the limit of Qr(kout), that is called
P (kout) (in the previous example P (kout) = 0.64093k−2.1

out

for kout ∈ N). The solid lines in the in-degree distributions
correspond to the stationary (in-degree) distribution ob-
tained in Section 2.1 (Eq. (11c) with A = 0 and P (kout)
the proposed law) for the “incorrect” model. Also, in each
graph we present a guide reference for the power law tail
behavior (dashed lines). This figure shows two important

Fig. 5. In-degree and out-degree distribution (points) from
simulations of the corrected model, for the cases where
Qr(kout) is: (a) ck−2.1

out , (b) ck−2.5
out , (c) ck−3

out, (d) ck−4
out, and

(e) 0.1(0.9)kout , where c is the normalization constant (it de-
pends on r). The solid lines correspond to the stationary dis-
tribution given by equation (11c) with A = 0 (P (kin) =

∞∑

kout=1

P (kout)
Ψ(kout+kin,3)

Ψ(kout,2)
). The dashed lines are plotted as

a guide reference, and the number below indicates the slope of
the straight line.

(now, not surprising) facts: 1) in order to find the sta-
tionary (in) degree distribution for the corrected model,
it is enough to study the stationary distributions of the
“incorrect” model; and 2) the simulations confirm the re-
lationship, reported in Section 2.2.2, between the tails of
the in-degree and out-degree distributions.
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3 Summary and discussion

For the model presented here, we showed a simple way
to compute the stationary probabilities. This model was
constructed in order to take into account the main fea-
tures of real directed growing networks with the property
that almost all the variability in the number of out-links
is “intrinsic” (see Sect. 2). From the stationary Property,
we showed how to compute the stationary joint in-out
degree distribution for an arbitrary out degree distribu-
tion, and arbitrary link attachment law (π). We studied
three different π’s, paying special attention to the pref-
erential linking on degree with attractiveness mechanism
(πk = (A+k)Nk

∑

j∈N

(A+j)Nj ). Once obtained the joint probability,

we compute:

(1) P (kin) as a function of P (kout);
(2) The correlation between Kin and Kout;
(3) The conditional expectation of Kin(Kout) given Kout

(Kin).

From P (kin) we studied the relationship between the dis-
tribution tails, giving a possible explanation for the in/out
degree tail relationship reported for many real networks.
The statistical measures mentioned in (2) and (3) were
studied for the WWW network, obtaining good agreement
with some of the analytical results presented in this paper.
Nevertheless, we cannot say that the model is appropriate
to describe this network (an important part of the vari-
ability would be not “intrinsic”).

Finally, we showed an application to the scientific pub-
lications network. In this network:

(a) New publications continuously appear (growing net-
work) and do not disappear.

(b) The structure is rigid. Published papers cannot change
their references, only new papers can change the num-
ber of citations of already published works.

(c) The publication that is forthcoming has a non pre-
dictable number of references, Kout (random variable)

(d) Even knowing Kout, the cited papers by the forthcom-
ing publication are unpredictable (there is a law of
attachment, π).

The model we proposed considers the four points men-
tioned above. The main difference with other models, is
that the number of out-links (references) of a new node
(paper) is treated now as a random variable. Therefore,
if the distribution of the number of references (P (kout))
is known, an important part ((a),(b) and (c)) of the sci-
entific network will be well described by the model. But,
the distribution of the number of references of the forth-
coming publication (out-degree distribution) has not been
reported. In addition, the attachment law ((d)) of the sci-
entific publication network is completely unknown, and
difficult to estimate it. Thus, we proposed a simple out
degree distribution (geometric) and an attachment law of
preferential linking on degree (we also consider preferen-
tial linking on in-degree and uniform attachment). With
these two assumptions, we found a very good fit. This ap-
plication also served to discuss how to compare various

models. In this matter, we proposed a measure (Eq. (23))
frequently used in statistics to compare two distributions.

From a modeling point of view, we see our results as
a further step from which more complex models may be
built in order to be closer to reality. The model can be seen
as the skeleton to construct more sophisticated models.
For example, it does not seem difficult to incorporate in
the model double links (a mixed out-links distribution)
in order to be closer to the metabolic network, or some
updates in the nodes to mimic the WWW network. Other
important issue to explore is what happens when P (kout)
depends on time in a simple parametric way. This last
point is related with accelerating networks [22].

We thank A. Calabrese, A. Cuevas, M. O’Connell, and G.
Solovey for critical reading of the manuscript, I. Armendáriz,
and P. Ferrari for useful discussions, and A.L. Barabási and S.
Redner for their generosity in sharing network data. Comments
of anonymous referees are most appreciated.

Appendix A: A closed equation for P (k)

If we were only interested on the stationary degree distri-
bution (P (k)), the computation is much easier than the
one presented in Section 2.1, since there is a closed equa-
tion for P (k). The growing network dynamics is given by:

Nk
n+1 = Nk

n + ∆k
n (a)

∆k
n = δKout=k +

Kout∑

i=1

δYi=k−1 − δYi=k (b)
(A.1)

where {Yi}1≤k≤n is a sequence of independent and identi-
cal distributed random variables, taking value k (k ∈ N)
with probability πk

n+1.

Property. P ≡ (P (1), P (2), . . . , P (k), . . . ) is the solution
of:

〈

∆k
n/

Nn∑

k∈N

Nk
n

= P

〉

= P (k) ∀k ∈ N. (A.2)

Replacing ∆k
n by equation (A.1b) in equation (A.2), we

get:
〈

δKout=k +
Kout∑

i=1

δYi=k−1 − δYi=k/
Nn∑

k∈N

Nk
n

= P

〉

= P (k).

(A.3)
From this last equation it is trivial to obtain that the
stationary degree probability satisfies:

P (k) = P (Kout = k) + (πk−1 − πk)〈Kout〉 (A.4)

where πk is the stationary probability that a new link at-
taches to a node with degree k. Under preferential linking
on degree with attractiveness, the stationary attachment
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Table B.1. Descriptive statistical measures for 4 WWW net-
works. Data from [13].

Cov(Kin, Kout) Var(Kout) Var(Kin)
WBGC01 155.682 171.61 40080.04
WGUK02 524.244 750.76 20534.89
WBGC03 348.486 870.25 54980742
WGIT04 3478.75 4502.41 776866

Table B.2. Correlation (r) and R for 4 WWW networks. Data
computed from Table B.1.

r R
WBGC01 0.0594 0.0654
WGUK02 0.1335 0.1912
WBGC03 0.0016 0.004
WGIT04 0.0588 0.0761

law, πk, remains equal to (k+A)P (k)
〈K〉+A . Replacing πk in equa-

tion (A.4), and using 〈K〉 = 2〈Kout〉, it is easy to conclude
that the limit degree distribution (P (k)) is given by equa-
tion (A.5).

P (k) = Ψ(k + A, 3 + δ)
k∑

kout=1

P (kout)
Ψ(kout + A, 2 + δ)

. (A.5)

Appendix B: WWW network

As we have mentioned in the Section 2.2.1, it is diffi-
cult to find articles on networks that report the sim-
ple descriptive measures (covariance, variance and con-
ditional expectation) for nodes discussed here. However,
a detailed statistical analysis of the topological proper-
ties of four different WWW networks have been reported
recently [13]. In [13] the covariance and the variance of
the number of out-going links (Kout) and in-going links
(Kin) were reported, which we give in Table B.1. The first
thing that can be noted is that for all the domains stud-
ied Var(Kout) < Var(Kin), consistent with equation (14).
Moreover, Cov(Kin, Kout) and Var(Kout) have similar val-
ues (consistent with Eq. (12)), the relative differences
seems large only for WBGC03. In order to compare in
a better way these last two quantities, Table B.2 shows r

and R :=
√

Var(Kout)
Var(Kin) for the same data. We can see that

WBGC01 and WGIT04 have very similar values of r and
R (see Eq. (13)). In order to study the relationship be-
tween 〈Kin/Kout〉 and Kout is necessary to have the com-
plete data. At this point, we analyze the WWW data ob-
tained from [14] presented in [15]. We built up a database
with the information of the number of out-links and in-
links ((Kout, Kin)) for each of the 325 729 nodes. In order
to have a good estimation of the conditional expectation,
we first restrict the study to the values of Kout such that
there exist at least 500 nodes. Figure B.1a shows the re-
lationship between Kout and the conditional mean of Kin

(〈Kin/Kout〉) given Kout. Interestingly, there is a strong
relationship between both. For values of the Kout smaller

Fig. B.1. Conditional mean of Kin given Kout, when for each
value of Kout there exist at least: (a) 500, and (b) 30 nodes.
Data presented as a confidence interval of 95%. (c) and (d)
Different representations of the joint in-out density of the links
in a node. (e) Scatter plot of Kin as a function of Kout. (f)
Conditional standard deviation of Kin given Kout, σin�out.
Data from [14].

Fig. B.2. P (Kout = k + 1) and P (Kin = k + 1) as a function
of k + 1. This graph was presented in [15].

than 20 there is a clear linear relationship between them.
A robust regression (least median of squares) estimation
between 〈Kin/Kout〉 and Kout gives a slope of 0.523 and
an intercept of 1.739. In the case Kout is greater than 20
it seems that 〈Kin/Kout〉 grows faster than linear, but it
is not clear if this effect is real (based in Fig. B.1b). The
graph presented in Figure B.1b is similar to the one in (a),
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but now we study the values of Kout such that there exist
at least 30 nodes. A plot of two different representations
of the joint in-out distribution is given in Figures B.1c
and B.1d, to have an idea of the shape of the joint law,
while (e) shows a scatter plot on a larger grid. Besides, the
in-degree variance (Var(Kin) = 1346.85) is greater than
the out-degree one (Var(Kout) = 461.25), consistent with
equation (14). Figure B.1f shows the conditional standard
deviation of Kin given Kout, σin/out =

√
Var(Kin/Kout).

Unlike the conditional expectation, the conditional vari-
ance does not seem to have any relationship with Kout.

In [15] the authors showed the empirical out-
degree (P (kout)) and in-degree (P (kin)) distributions (see
Fig. B.2), and reported a power exponent of 2.45 for
the out-degree distribution and a value of 2.1 for the in-
degree3. This is the first empirical evidence that the model
presented here cannot describe well the WWW network.
The model has the characteristic that the power law ex-
ponents (in-out) are equal. Finally, the second evidence
that contradict the model is the fact that in this network
r and R are not similar, r = 0.2244 and R = 0.5852.
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8. B. Tadić, Physica A 293, 273 (2001)
9. M.E.J. Newman, SIAM Review 45, 167 (2003)

10. D.J. Price, Science 149, 510 (1965)
11. P.L. Krapivsky, S. Redner, Lect. Notes in Physics 625,

1616 (2003)
12. R. Lambiotte,

http://www.lambiotte.be/talks/vienna2006.pdf

(2006)
13. M.A. Serrano, A. Maguitman, M. Boguña, S. Fortunato, A.

Vespignani, ACM Trans. Web, 1, No.2. Article 10 (2007)
14. http://www.nd.edu/$\sim$networks/resources.htm

15. R. Albert, H. Jeong, A.L. Barabási, Nature 401, 130
(1999)

16. http://physics.bu.edu/$\sim$redner/projects/

citation/isi.html

17. J.M. Soler, J. Informetrics 1, 123 (2007)
18. S.N. Dorogovtsev, J.F.F. Mendes, Phys. Rev. E, 62, 1842

(2000)
19. K.B. Hajra, P. Sen, Physica A, 346, 44 (2005)
20. P.L. Krapivsky, S. Redner, F. Leyvraz, Phys. Rev. Lett.,

85, 4629 (2000)
21. P.L. Krapivsky, S. Redner, Phys. Rev. E, 63, 66123 (2001)
22. S.N. Dorogovtsev, J.F.F. Mendes, Handbook of Graphs and

Networks: From the Genome to the Internet (Wiley-VCH,
Berlin, 2002), p. 318

http://www.lambiotte.be/talks/vienna2006.pdf
http://www.nd.edu/$sim $networks/resources.htm
http://physics.bu.edu/$sim $redner/projects/
citation/isi.html

	Introduction
	Growing directed network model
	Summary and discussion
	Appendix A: A closed equation for P(k)
	Appendix B: WWW network
	References

